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APPROXIMATING THE ENERGY OF NANOTUBES 
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ABSTRACT. The eigenvalues of a graph are the eigenvalues of its adjacency 
matrix and the energy of a molecular graph is defined as the sum of absolute 
values of its eigenvalues. In this paper, some classical methods are used to 
evaluate the energy of nanotubes.  

Keywords: Eigenvalue, energy, nanotube. 

INTRODUCTION  

A molecular graph G(M) is called the pair (V(M),E(M)) of the sets V(M) 
and E(M) of atoms and chemical bonds of the molecule M. Throughout this 
paper we consider only simple molecular graphs, without multiple bonds and 
loops [1]. Suppose V(M) = {v1,v2,…,vn}. Then the adjacency matrix A(M) = [aij] 
is an n × n {0,1}matrix in which for all integers i and j, 1  i , j  n, aij = 1 if and 
only if there is a chemical bond between vi and vj. The spectrum of a molecular 
graph G(M) (simply denoted by M) is a multiset containing all numbers which 
are eigenvalues of A(G), together with their multiplicities. Here, a multiset is a 
generalization of the concept of a set in which multiple instances of elements 
are allowed [2,3]. 

A molecular graph M is called bipartite if its vertex set can be partitioned 
into two disjoint sets R and S such that every edge connects a vertex in R and a 
vertex in S. The energy of a molecular graph, Ē(M), is defined as the sum of 
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absolute values of eigenvalues of M. In chemistry, the energy of a conjugated 
hydrocarbon is computed by the Hückel theory. Ivan Gutman [4,5] proved that if 
the molecular graph is bipartite then the two different concepts for energy will 
coincides. In [6], the dependence of energy on the size of the molecule and the 
number of Kekulé structures are studied in details, and in [7], the connection 
between the energy and the total electron energy of a class of organic 
molecules together with some basic mathematical properties of graph energy 
are presented.  

Gutman et al. [8] proved that if F is a fullerene or nanotube with 
n carbon atoms, then 1.34n ≤ Ē(F) ≤ 1.73n; in [9] an infinite sequence 
of fullerene containing 10n vertices is considered. They proved that all 
terms of this sequence have a centrosymmetric adjacency matrix and by 
properties of centrosymmetric matrices and KeyFan theorem, a better 
lower bound to the energy of the fullerene may be obtained for 
n{10×2×5,10×2×7,10×2×11,10×2×13}. In [10], the centrosymmetricity of 
another infinite series of fullerene graphs is proved and its upper bound is 
given.  

John and Sachs [11] developed an elementary method to factor the 
characteristic polynomial of (3,6)fullerene into smaller polynomials, all of the 
same size and in [12] the authors applied this result to compute the energy of 
a nanotorus and that of a (3, 6)fullerene. In [13], some numerical methods 
are given in view of estimating the energy of nanohorns. In this paper, we 
continue [13] to approximate the energies of some nanotubes. 

MAIN RESULTS 

The Mathematical Nanoscience is a new branch of science that considers 
mathematical properties of nano-objects. The symmetry and topology are 
two important subjects in mathematics used for study of these new materials. 
For more information in this topic, we refer to innovating works of Diudea 
[1418]. This section is concerned with the use of numerical techniques in 
the study of energy of the molecular graph of nanotubes. An approximation 
for the energy of the molecular graphs of a class of nanotubes (Figure 1) is 
presented. In Table 1, we search for the best of such a function to fit data listed in 
this table. Our main method applies a combination of two computer 
packages TopoCluj [19] and DataFit [20].  

Suppose we have a data set A = {(x1,y1), ..., (xn,yn)}  ₵  ₵, where ₵ 
denotes the set of all complex numbers. This data set is usually based on an 
experiment or a measurement. It is easy to see that it is possible to find a 
sequence {t}t  n such that t(xi) = yi, for each i and t with 1  i  n and t  n. 
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However, the function that fits data set A is not unique. By this reason finding 
a curve  with a given property to fit data set A is an important question in 
numerical analysis. In an exact phrase, the curve fitting is a curve that has 
the best fit to a series of data points and allows other constrains. 

Figure 1. The Molecular Graph of a Nanotube. 

Let C: y = f(x) is a curve. We say that a point (a,b) belongs to this 
curve, if b = f(a). This curve is called linear if for points (x1,y1) and (x2,y2) on 
C, we have y1 + y2 = f(x1 + x2). For evaluating the energy of a sequence of 
nanotubes, we are interested in curve fitting by elementary functions containing 
polynomials, exponential and logarithmic functions. 

Figure 2. The Molecular Graph of E[6]. 
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In what follows, the eigenvalues of a sequence {E[n]}n1 of zig-zag 
nanotubes with exactly 6n + 12 vertices is considered (Figure 2). We have to 
note that the molecular graph of the open nanotubes is bipartite. A well-known 
result in algebraic graph theory states that the eigenvalues of every bipartite 
graph are symmetric about zero. Thus, the Energy of E[n] is two times the 
summation of positive eigenvalues.  

Recall that since the molecular graph of a nanotube is bipartite its 
graph and Hückel energies are the same. In Table 1, the positive eigenvalues 
of E[n], 1  n  7, together with their graph energies are given. 

Table 1. The Positive Eigenvalues of E[n], 1  n  7. 

Nano-
tubes 

Positive Eigenvalues Energy 

E[1] 2.7616, 2.1249, 1.8019, 1.8019, 1.3633, 1.2470, 1.2470, 0.4450, 0.4450 26.4752 

E[2] 
2.8512, 2.4329, 1.8794, 1.8794, 1.8372, 1.5321, 1.5321, 1.2555, 1.0000, 

1.0000, 0.3473, 0.3473 
35.7888 

E[3] 
2.8986, 2.6067, 2.1636, 1.9190, 1.9190, 1.6825, 1.6825, 1.6453, 1.3097, 

1.3097, 1.1898, 0.8308, 0.8308, 0.2846, 0.2846 
45.1144 

E[4] 
2.9265, 2.7123, 2.3770, 1.9565, 1.9419, 1.9419, 1.7709, 1.7709, 1.5120, 
1.4971, 1.4970, 1.1466, 1.1361, 1.1361, 0.7092, 0.7092, 0.2411, 0.2411 

54.4468 

E[5] 
2.9443, 2.9443, 2.5204, 2.1823, 1.9563, 1.9563, 1.8271, 1.8271, 1.7976, 
1.6180, 1.6180, 1.4159, 1.3383, 1.3383, 1.1167, 1.0000, 1.0000, 0.6180, 

0.6180, 0.2091, 0.2091 
63.7832 

E[6] 
2.9564, 2.8276, 2.6203, 2.3458, 2.0215, 1.9659, 1.9659, 1.8650, 1.8649, 
1.7004, 1.7004, 1.6740, 1.4780, 1.4780, 1.3443, 1.2053, 1.2053, 1.0951, 

0.8915, 0.8915, 0.5473, 0.5473, 0.1845, 0.1845 
73.1214 

E[7] 
2.9649, 2.8610, 2.6924, 2.4663, 2.1934, 1.9727, 1.9727, 1.8916, 1.8909, 
1.8899, 1.7589, 1.7589, 1.5783, 1.5775, 1.5772, 1.3546, 1.3546, 1.2897, 
1.0939, 1.0939, 1.0790, 0.8034, 0.8034, 0.4910, 0.4910, 0.1652, 0.1652 

82.4630 

Suppose 1  2  ...  6n+12 are eigenvalues of the molecular graph 
of E[n]. From our calculations given in Table 1, we can suggest the following 
observations: 

1. If n > m then 6n+12(E[n]) > 6m+12(E[m]). As a consequence,
limn6n+12(E[n]) = 3.

2. There is no zero eigenvalue, but limn3n+6(E[n]) = 0.
3. The function a + b  ln(x)+c  exp(x) is the best approximation

model for energy.
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Next we consider another sequence {F[n]}n1, of armchair nanotubes 
(Figure 3), with exactly 6n + 6 vertices. In Table 2, the positive eigenvalues of 
F[n], 1  n  8, and their energies are listed. 

Figure 3. The Molecular Graph of F[3]. 

Table 2. The Positive Eigenvalues of F[n], 1  n  8. 

Nano-
tubes 

Positive Eigenvalues Energy 

F[1] 2.4142, 1.7321, 1.7321, 1, 1, 0.4142 16.5852 
F[2] 2/4142, 2/101, 2/101, 1/2593, 1/2593, 1, 1, 1, 0.4142 25.098 
F[3] 2.4142, 2.2361, 2.2361, 1.7321, 1.7321, 1, 1, 1, 1, 1, 1, 0.4142 33.5296 

F[4] 
2.4142, 2.2996, 2.2996, 1.9683, 1.9683, 1.4581, 1.4581, 1, 1, 1, 1, 1, 

0.8437, 0.4142 
41.9356 

F[5] 
2.4142, 2.3344, 2.3344, 2.1010, 2.1010, 1.7320, 1.7320, 1.2593, 1.2593, 

1, 1, 1, 1, 1, 1, 0.7420, 0.7420, 0.4142 
50.3316 

F[6] 
2.4142, 2.3555, 2.3555, 2.1825, 2.1825, 1.9051, 1.9051, 1.5397, 1.5397, 

1.1120, 1.1120, 1, 1, 1, 1, 1, 1, 1, 0.6721, 0.6721, 0.4142 
58.7244 

F[7] 
2.4142, 2.3692, 2.3692, 2.2361, 2.2361, 2.0205, 2.0205, 1.7320, 1.7320, 

1.3848, 1.3848, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.6220, 0.6220, 0.4142 
67.1152 

F[8] 
2.4142, 2.3786, 2.3786, 2.2730, 2.2730, 2.1010, 2.1010, 1.8685, 1.8685, 
1.5839, 1.5839, 1.2593, 1.2593, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.9129, 0.9129, 

0.5849, 0.5849, 0.4142 
75.5052 

We now assume that 1  2  ...  6n+12 are eigenvalues of the 
molecular graph of F[n]. From our calculations given Table 2, we can draw 
the following observations: 

1. The maximum eigenvalue of F[n] , n  1, is 2 + 1.
This eigenvalue is simple.

2. The minimum positive eigenvalues of F[n], n  1, is 2  1.
This eigenvalue is simple.
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3. If n > m then 6n+5(F[n]) > 6m+5(F[m]). As a consequence,
limn6n+5(F[n]) = 1 + 2.

4. If n is even then the multiplicity of 1 is n + 1 and for odd n, the
multiplicity is 2n.

5. The function a + b  ln(x)+c  exp(x) is the best approximation
model for energy.

CONCLUSION 

In this paper the power of numerical methods for investigation of energy 
of armchair and zig-zag nanotubes are investigated. Some results obtained 
by our numerical investigation can be proved in general, but evaluation of 
energy for nanotubes of arbitrary length and diameter is an open question for 
future study. 
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